Linear preservers of zeros of matrix polynomials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

linear preservers of two-sided matrix majorization

for vectors x, y ∈ rn, it is said that x is left matrix majorizedby y if for some row stochastic matrix r; x = ry. the relationx ∼` y, is defined as follows: x ∼` y if and only if x is leftmatrix majorized by y and y is left matrix majorized by x. alinear operator t : rp → rn is said to be a linear preserver ofa given relation ≺ if x ≺ y on rp implies that t x ≺ ty onrn. the linear preservers o...

متن کامل

Linear Preservers of Majorization

For vectors $X, Yin mathbb{R}^{n}$, we say $X$ is left matrix majorized by $Y$ and write $X prec_{ell} Y$ if for some row stochastic matrix $R, ~X=RY.$ Also, we write $Xsim_{ell}Y,$ when $Xprec_{ell}Yprec_{ell}X.$ A linear operator $Tcolon mathbb{R}^{p}to mathbb{R}^{n}$ is said to be a linear preserver of a given relation $prec$ if $Xprec Y$ on $mathbb{R}^{p}$ implies that $TXprec TY$ on $mathb...

متن کامل

Non-real zeros of linear differential polynomials

Let f be a real entire function with finitely many non-real zeros, not of the form f = Ph with P a polynomial and h in the Laguerre-Pólya class. Lower bounds are given for the number of non-real zeros of f ′′ + ωf , where ω is a positive real constant.

متن کامل

Some compact generalization of inequalities for polynomials with prescribed zeros

‎Let $p(z)=z^s h(z)$ where $h(z)$ is a polynomial‎ ‎of degree at most $n-s$ having all its zeros in $|z|geq k$ or in $|z|leq k$‎. ‎In this paper we obtain some new results about the dependence of $|p(Rz)|$ on $|p(rz)| $ for $r^2leq rRleq k^2$‎, ‎$k^2 leq rRleq R^2$ and for $Rleq r leq k$‎. ‎Our results refine and generalize certain well-known polynomial inequalities‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2005

ISSN: 0024-3795

DOI: 10.1016/j.laa.2004.08.015